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Abstract. In a recent article we have reported extensive molecular dynamics simulations for the melting
freezing and nucleation in unconstrained nanoclusters of KCl. Based on that study we propose, in the
present article, a theoretical model for the solid-liquid coexistence in finite systems, at virtually zero
external pressure and no vaporisation. The main trends of the phase coexistence behaviour, namely the
starting and the end points, are explained by the model as a function of system size. Other specific
properties of clusters, eventually accessible by experiment, are defined and their values predicted. On the
absence of available experimental data, the model is tested against simulation results with fairly good
accordance.

PACS. 61.46.-w Nanoscale materials: clusters, nanoparticles, nanotubes, and nanocrystals – 64.70.Nd
Structural transitions in nanoscale materials

1 Introduction

Several authors have discussed theoretical models for
phase coexistence in clusters, namely in what concerns
the melting point [1], the solid-liquid, solid-vapour [2,3]
and vapour-liquid equilibria [4]. In these works equilib-
rium is established between a finite phase immersed in a
bulk phase, corresponding to the limit conditions of the
initial or final stages of a transition where the emerg-
ing/vanishing phases present deviations from bulk prop-
erties due to size effects on the free energy. Three well
known cases [3] are: (a) formation of a liquid droplet in-
side the vapour contained in a vessel with volume V at
temperature T , whose solution is Laplace’s equation; (b)
formation of the droplet at pressure p and temperature T ,
whose solution is Thomson-Gibbs’s equation; and (c) for-
mation of a crystal inside the liquid (or vapour) in a
vessel of volume V at temperature T , that corresponds
to Gibbs-Curie-Wulff’s theorem. In the same context,
Cleveland and collaborators [5] presented the “cluster wet-
ting model”, where the parametric determination of the
free energy of a cluster as a function of the molar fractions
of the phases (considered to be in a geometry of over-
lapping spheres) is used to compute the most favourable
wetting conditions of a system at temperature T and zero
pressure, depending on the interfacial energy densities of
the material.
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The present model aims at predicting the conditions of
solid-liquid coexistence in unconstrained clusters, at virtu-
ally zero external pressure and no vaporisation, and corre-
lating their properties. Similarly, for example, to the use of
arbitrary geometries or the omission of surface curvature
effects [5–8], some approximations shall also be considered
to the general problem concerned with the various phase
and inter-phase contributions.

Clusters behave differently from the corresponding
bulk systems, mainly in phase change or phase coexistence
regions. However, they asymptotically approach the bulk
properties as the size increases. This is just the basis of
the proposed model. It is assumed that a given cluster has
a virtual bulk-like behaviour which is taken as the refer-
ence state. The model traces out the deviations relatively
to the reference state, which are dependent on the number
of particles, n. All the derived equations should then yield
the right bulk limit when n → ∞.

Section 2 presents the model and its limitations. The
model application to phase diagrams of potassium chlo-
ride clusters is discussed in Section 3. Section 4 contains
the derivation of other properties, eventually accessible by
experiment, and their comparison with simulation results.
Finally, Section 5 presents the concluding remarks.

2 The model

In a bulk system, after the melting onset and solid-
liquid equilibrium is attained, adding energy to the system
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converts a portion of solid to liquid, with the temperature
and pressure remaining constant. The number of solid ions
in the bulk system, n∞

s , at a given energy E, is:

n∞
s =

El(Tm) − E

El(Tm) − Es(Tm)
n (1)

where Es(Tm) and El(Tm) are, respectively, the total ener-
gies of the bulk solid and liquid at the melting temper-
ature Tm, and n is the total number of particles in the
system.

However, a finite system (cluster) prepared at any fixed
total energy over the bulk solid-liquid line shall always
have a size less than the critical nucleus (see Eq. (5))
at Tm. Therefore, at those fixed energies a number of
solid ions, ∆ns, shall be transferred to the liquid until
the cluster reaches a temperature T < Tm at which the
corresponding solid critical nucleus can sustain equilib-
rium with the liquid. If the conversion of solid ions into
liquid was realized at constant temperature, it would re-
quire an external energy [∆ns/n]∆h, to compensate for
the increase of potential energy. For the clusters, in the
conditions mentioned above, that conversion is realized at
constant total energy, so the increase of potential energy
is entirely obtained at the cost of the internal kinetic en-
ergy. This results in a decrease of the cluster temperature,
∆T = T − Tm,

∆T =
∆ns∆h

nCp
(2)

where ∆h is the enthalpy of melting and Cp is the heat
capacity.

The number of solid ions in the cluster, at energy E,
as a function of temperature is obtained from:

ns = nbb
s + ∆ns (3)

where nbb
s , given by the same form of equation (1), should

be understood as the number of solid ions that the cluster
would have if it followed the bulk behaviour. Es(Tm) and
El(Tm) are, now, the solid and liquid cluster energies at the
bulk melting temperature, Tm, which depend, of course,
on the cluster size.

Substituting nbb
s from (1) and ∆ns from (2):

ns =
El(Tm) − E

∆h
n +

(T − Tm)nCp

∆h
. (4)

In a first order approximation, we can take the bulk value
for ∆h [9]. However, ∆h is also a function of the num-
ber of particles. This aspect shall be taken into account
in a second order approximation presented in Section 2.1.
Incidentally, it is noteworthy that equation (4) yields the
right bulk limit when n → ∞. Relatively to Cp, it seems
plausible to take it, in a first approximation, as the av-
erage of the solid and liquid values at the start and end
of melting, since that values do not differ much for alkali
halide clusters [10]. However, for systems which have very
distinct solid and liquid heat capacities a better approxi-
mation may be needed.

The size of the critical nucleus, n∗, at the melting tem-
perature, Tm, approaches infinity according to the follow-
ing equation, derived elsewhere [10,11]:

n∗ =

[
4υ

2
3 σTm

(Tm − T )∆h

]3

(5)

where υ is the specific volume of the solid, σ is the surface
tension in the interface, and ∆h is the enthalpy of melting.
Equation (5) was obtained, without loss of generality, for a
cubic nucleus (inside a bulk liquid phase) in order to be in
accordance with the symmetry of the available simulation
data for KCl. Moreover, according to the results of our
previous work [10], it is assumed that equation (5) is a
fairly good approximation even when the liquid phase is
not infinite and the nucleus is not completely wetted.

The size of the cubic critical nucleus can be recast in
a more compact form:

n∗ = k3 Tm
3

(Tm − T )3
(6)

where

k3 =

[
4υ

2
3 σ

∆h

]3

. (7)

Phase equilibrium is attained when the crystallite size,
given by equation (4), becomes equal to the size of the
critical nucleus, given by equation (6), that is, when the
temperature T is a root of:

El(Tm) − E

∆h
n +

(T − Tm)nCp

∆h
− k3 Tm

3

(Tm − T )3
= 0. (8)

From equation (8):

E = El(Tm) + (T − Tm)Cp − k3 ∆h Tm
3

n(Tm − T )3
. (9)

This is the key equation to work out the predicted (T, E)
values for direct comparison with the results from simula-
tions.

Figure 1 represents the crystallite (ns) and critical nu-
cleus (n∗) sizes, at different energies, as a function of tem-
perature, given by equations (4) and (6) respectively.

The lower temperature where coexistence still exists
can be obtained noting that (4) and (6) are tangent at
that point (see Fig. 1)

Tinf = Tm −
(

3k3 Tm
3 ∆h

nCp

) 1
4

(10)

and the correspondent energy is

E(Tinf) = El(Tm) +
∆h

n

[
(Tinf − Tm)nCp

∆h

−k3 Tm
3

(Tm − Tinf)3

]
. (11)
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Fig. 1. Graphical construction, built from equations (4)
and (6), to determine the limits of the phase coexistence for
an arbitrary cluster.

The lowest energy where coexistence, predicted by equa-
tion (8), is possible can be obtained noting that the tem-
perature along the solid curve, near the melting point, is

Ts = Tm − Es(Tm) − E

Cp
(12)

and equating it to temperature T in equation (6) with
n∗ = n:

Eif = Es(Tm) − kCpTmn− 1
3 . (13)

Melting in the energy interval
]
Eif , Es(Tm)

[
shall be, from

now on, designated as early melting, for the bulk-like con-
ditions have been chosen for clusters. However, this does
not mean an exceptional situation. Indeed, at the present
approximation level, the model always predicts the cluster
melting onset at lower temperatures and energies than the
ones of the corresponding bulk systems.

The temperature correspondent to the energy Eif is
(see Fig. 1)

Tif = Tm

(
1 − kn− 1

3

)
. (14)

The domain of T values for the resolution of the equation
model in order to E is bounded by Tif and Tinf .

2.1 Second order approximation to ∆h

The dependence of ∆h on the number of particles can be
found considering:

El(Tm) = E∞
l(Tm) + ςln

− 1
3 (15)

Es(Tm) = E∞
s(Tm) + ςsn

− 1
3 (16)

hence
∆h = ∆h∞ + ∆ςn− 1

3 . (17)

The value of k is also dependent on n:

k =
4υ

2
3 σ

∆h∞ + ∆ςn− 1
3
· (18)

The limit value k∞ = 4υ
2
3 σ/∆h∞ is obtained when

n → ∞. ∆ς is the rate of change of the melting enthalpy
with system size. It can be expressed in terms of the solid
and liquid surface tensions, and the entropy variation dur-
ing the phase change. This relation is achieved from the
Helmholtz free energies [11]:

Ax(Tm)n = A∞
x(Tm)n + Fσx (19)

noting that the total energies present in equations (15)
and (16) are molar values and that at zero pressure,

A∞
l(Tm) = A∞

s(Tm). (20)

Equation (19) for solid and liquid takes, respectively, the
forms:

As(Tm) = A∞
s(Tm) + 6σsυ

2
3
s n− 1

3 (21)

Al(Tm) = A∞
l(Tm) + 3

2
3 (4π)

1
3 σlυ

2
3
l n− 1

3 . (22)

The resulting change from solid to liquid is then

∆A =
(
3

2
3 (4π)

1
3 σlυ

2
3
l − 6σsυ

2
3
s

)
n− 1

3 (23)

that is

∆h = Tm∆S +
(
3

2
3 (4π)

1
3 σlυ

2
3
l − 6σsυ

2
3
s

)
n− 1

3 . (24)

Since entropy should approximately change as ∆S =
∆S∞ + ∆ϑn−1/3, where ∆ϑ is the difference between the
entropy rate of change, in the solid and liquid, with system
size, and ∆h∞ = Tm∆S∞, it finally becomes

∆h = ∆h∞ +
(
Tm∆ϑ + 3

2
3 (4π)

1
3 σlυ

2
3
l − 6σsυ

2
3
s

)
n− 1

3 .

(25)
It should be noted that, with this level of approximation
to ∆h, equation (14) predicts the evolution of the melting
point as a function of the cluster size with a close profile
to the one of Sambles’s model [1]. Nonetheless, as previ-
ously noted by Chushak [1], about the models proposed
by Pawlow, Sambles and himself, equation (14) is not al-
ways applicable, since it relies on the assumption that k is
independent of nucleus wetting level, even at the limit con-
ditions of no wetting. Consequently, it is not, in general,
expectable that equation (14) may correctly predict the
melting point of a finite system. In the context of the de-
velopment of the present model, it is relevant, however, to
check out this approximation against simulation or exper-
imental results. In fact, simulations to be reported [12,13],
show that for LiCl and NaI clusters the approximation is
surprisingly good.

3 Application of the model to KCl clusters

Simulation results [10,13,14] show that early melting is
present for LiCl and NaI, but not for KCl clusters. Thus,
the present model is expected to be applicable to KCl
clusters only in the energy domain

]
Es(Tm), E(Tinf)

[
.
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Table 1. Energies (kJmol−1) of the solid and liquid at the bulk
melting point (1049 K) for KCl clusters of different sizes (n).

n Es(Tm) El(Tm)

5832 −642.3 −617.3

4096 −641.1 −616.6

2744 −639.7 −615.8

1728 −638.0 −614.6

1000 −636.1 −613.0

512 −632.1 −611.1

In order to apply the model to a particular mate-
rial, values for the thermodynamical parameters in equa-
tions (4) and (6) are needed. The energies Es(Tm) and
El(Tm) for KCl clusters, used in equation (4), have been
obtained from simulation results and are listed in Ta-
ble 1. Equation (17) was used with ∆h∞ = 26.5 kJmol−1

and ∆ς = 34.4 kJ mol−1. The average of the bulk solid
and liquid heat capacities near the melting temperature,
Cp = 70 J K−1 mol−1, was taken accordingly to the as-
sumption referred to before. Despite all the parameters
necessary to compute k are available, we have chosen to
estimate k∞ (note that both are related through Eq. (18))
from the simulation data. k∞ = 0.769 was obtained, by
trial and error, in order to make the predicted values corre-
spondent to the domain

]
Es(Tm), E(Tinf)

[
as close as pos-

sible to the simulated ones. The consistency of this value
was tested by computing the surface tension presented in
Section 4.

Figure 2 displays the phase diagrams for KCl clusters
reported in our recent article [10] but, now, including the
model predictions. The more noticeable divergences are,
as expectable, for the 512 and 1000 ions clusters, but even
for those cases the predictions are not incongruent, if the
early melting region is excluded.

Equation (14), and also the models discussed by
Chushak [1], are not applicable to potassium chloride clus-
ters since early melting is not, in general, observed. In fact,
the melting points for cluster sizes over 216 ions are near
to the bulk value.

4 Properties

4.1 Interfacial surface tension

We have reported elsewhere [10], the value
σ = 154 mJ m−2 for the interfacial surface tension
on the solid-liquid interface, estimated from equation (7):

σ =
1
4
k∆hυ− 2

3 . (26)

As the present model accounts for the thermal balance
between droplet and seed, expressed by equation (4), an
improved result is expected.

The value ρ = 1/υ = 28.65 nm−3 was obtained
for the 512 ions solid system, under periodic bound-
ary conditions at zero pressure and a temperature near
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Fig. 2. (Color online) Predictions of the solid-liquid coexis-
tence for KCl clusters (full line); (dashed) early melting region.
Simulation results: heating is in orange (α), nucleated cooling
is in blue (β), non nucleated cooling is in green (γ).

Tm. The resulting value is σ = 1/4 × 0.769 × 26.5 ×
28.652/3 kJmol−1nm−2 = 79.2 mJ m−2, in the same or-
der of magnitude of Fiechter’s [15] σs = 168 mJ m−2 and
Sato’s [16] σl = 97.83 mJm−2 experimental results. More-
over, from Antonov’s rule [1] σ = σs − σl = 70.2 mJm−2

was expected. Despite the actual prediction is much bet-
ter than the one previously reported, this result should
not be overemphasised since the model does not take into
account partially unwetted nuclei.

4.2 Molar fractions

A direct sub-product of the model is the liquid molar frac-
tion:

χliq =
n −

(
kTm

Tm−T

)3

n
. (27)

Figure 3 shows the simulation results [10], obtained with
a method based in the analysis of the velocity autocorre-
lation functions described elsewhere [14], compared with
the model predictions for potassium chloride clusters with
2744, 4096 and 5832 ions.
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4.3 Volume and radius of gyration

The volume, VC, of the cluster can be estimated from

V C = nυl +
(

kTm

Tm − T

)3

(υs − υl) (28)

where υs and υl are, respectively, the solid and liquid spe-
cific volumes. Since density does not sharply vanishes at
the cluster surface [11], in unconstrained conditions, this
prediction must be corrected by a term proportional to
V

2/3

C in order to obtain the effective volume.
Assuming an approximate spherical symmetry for the

cluster in the phase coexistence region, the radius of gy-
ration,

R2
g =

3
5
R2 (29)

becomes

R2
g =

3
5

⎧⎨
⎩
[

3
4π

(
nυl +

(
kTm

Tm − T

)3

(υs − υl)

)] 1
3

+ c

⎫⎬
⎭

2

(30)
where c is the additional contribution due to the diffuse
surface.

Figure 4 presents the prediction for 2744 ions com-
pared with the simulation results; the value of c = 1.8 Å
was used.

4.4 Hysteresis

The intrinsic degree of hysteresis may be defined from
equation (10) as

∆Thist = Tm − Tinf =
(

3k3 Tm
3 ∆h

nCp

) 1
4

(31)

or more rigorously

∆Thist = Tm − Tl(E(Tinf)) (32)
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Fig. 4. Prediction of the radius of gyration as a function of
temperature for a KCl cluster with 2744 ions.
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Fig. 5. Prediction of the hysteresis degree as a function of
system size for KCl clusters.

where E(Tinf) is the energy of the cluster at temperature
Tinf given by equation (11). After some algebra,

Tl(E(Tinf)) = Tm −
(
3

1
4 + 3−

3
4

)
∆h

1
4 (kTm)

3
4 (Cpn)−

1
4

(33)
and finally

∆Thist =
(
3

1
4 + 3−

3
4

)
∆h

1
4 (kTm)

3
4 (Cpn)−

1
4 . (34)

For systems that present early melting

∆Thist = Tif − Tl(E(Tinf)) (35)

= −Tmkn− 1
3 + (3

1
4 + 3−

3
4 )∆h

1
4 (kTm)

3
4 (Cpn)−

1
4.

(36)

These results show some properties of the clusters ap-
proaching the bulk as a function of n−1/4 instead of n−1/3.

Figure 5 display the comparison between model pre-
diction and values inferred from simulations. The intrinsic
degree of hysteresis approaches zero as n → ∞.
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Fig. 6. Prediction of the minimum extent of supercooling as
a function of system size for KCl clusters.

4.5 Minimum extent of supercooling

The temperature given by equation (33) is the highest
temperature where the system can start a liquid to solid
transition. It defines the minimum extent of supercooling

θmsc = Tl(E(Tinf))/Tm (37)

that a droplet should attain during the freezing process
before it can crystallise. Figure 6 shows the comparison
between the model predictions and the simulation results.

4.6 Effective enthalpy of melting

The difference

∆hef = E(Tinf) − Es(Tm) (38)

= ∆h −
(
3

1
4 + 3−

3
4

)
∆h

1
4 (kTmCp)

3
4 n− 1

4 (39)

gives the effective enthalpy of melting in a system with-
out early melting. In a calorimeter with a fixed energy
flux, it corresponds to the energy slowly transferred to
the system, starting from the point where the tempera-
ture ceases to increase, up to the point where it starts to
increase again (see Fig. 2).

In case of early melting it will be instead

∆hef = E(Tinf) − Eif (40)

= ∆h + kCpTmn− 1
3

− (3
1
4 + 3−

3
4 )∆h

1
4 (kTmCp)

3
4 n− 1

4 . (41)

Figure 7 shows the comparison between the model predic-
tion and simulation results.

4.7 Heat capacity

Assuming early melting, the heat capacity along the phase
coexistence region , cp, can be obtained from equation (9):

cp =
(

∂E

∂T

)
p

= Cp − 3k3 ∆h Tm
3

n(Tm − T )4
. (42)
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Fig. 7. Prediction of the effective enthalpy of melting as a
function of system size for KCl clusters.

The minimum, negative, value for cp will occur at the
beginning of the early melting, that is substituting (14)
in (42),

cp|T=Tif
= Cp − 3

∆h

Tmk
n

1
3 . (43)

This approaches infinity, by negative values, when n → ∞.
The maximum value is attained at the end of the melt-

ing, that is substituting (10) in (42),

cp|T=Tinf
= Cp − Cp = 0. (44)

As the system dimension becomes close to infinity, the
interval where cp is finite narrows to this single point since
Tinf approaches Tm.

The global heat capacity on melting ζp, that is the
quotient of the energy that is needed to melt the system
by the temperature change during the process, is

ζp =
∆hef

Tl(E(Tinf)) − Tif
(45)

=
∆h + kCpTmn− 1

3 − (3
1
4 + 3−

3
4 )∆h

1
4 (kTmCp)

3
4 n− 1

4

Tmkn− 1
3 − (3

1
4 + 3−

3
4 )∆h

1
4 (kTm)

3
4 (Cpn)−

1
4

(46)

and approaches infinity, by negative values, when n → ∞.
In the absence of early melting it becomes instead:

ζp =
∆hef

Tl(E(Tinf)) − Tm
(47)

= −
∆h −

(
3

1
4 + 3−

3
4

)
∆h

1
4 (kTmCp)

3
4 n− 1

4(
3

1
4 + 3−

3
4

)
∆h

1
4 (kTm)

3
4 (Cpn)−

1
4

(48)

with the same asymptotic behaviour as (45).
As the heat capacity is a derivative and the simulation

results have considerable fluctuations in the coexistence
region, the comparison of the model predictions with sim-
ulations will be presented in a future report.
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5 Concluding remarks

A model to predict the solid-liquid coexistence of uncon-
strained clusters and to correlate their properties has been
proposed. The model predictions compare well with sim-
ulation results, suggesting that critical conditions of the
solid nuclei are prevalent over other contributions. All the
derived equations yield the right bulk limit when the num-
ber of particles approaches the thermodynamic limit.

The application of the model to the prediction and
interpretation of different solid phases in lithium chloride
and to the phase behaviour of other alkali halide clusters
is in progress and will be reported soon [12,13].

The improvement of the model in order to predict the
existence or absence of early melting is one of the perspec-
tives to future work. Moreover, the need to deal with the
vapour pressure of more volatile substances also claims for
an extension of the model.

Despite alkali halide aggregates can be observed in the
absence of applied external pressure for considerable life-
times, significant values are expected for the internal pres-
sure in small clusters due to the large fraction of surface
particles and small surface curvature radius. These values
should approach the bulk one (which is the reference state
of the present model) as the cluster sizes approach infin-
ity. In this limit, they are virtually zero for unconstrained
systems and nearly zero for solid and liquid alkali halides
in equilibrium with their vapour pressures up to the boil-
ing point. Indeed, it is well known from experiment that
ionic salts present, even in the liquid state, very low vapour
pressures. The derivation of the internal pressure from the
model, and its comparison with simulation results, is also
in perspective to further development.

One of us (P. Rodrigues) gratefully acknowledges the institu-
tional support of the Department of Chemistry and Biochem-
istry, FCUL, during his research work. We thank Intel Corpo-
ration for the free access to their compilers and the GNU and
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